Finite-difference computation of transient electromagnetic waves for cylindrical geometries in complex media
نویسندگان
چکیده
We present two novel, fully three-dimensional (3-D) finite-difference time-domain (FDTD) schemes in cylindrical coordinates for transient simulation of electromagnetic wave propagation in complex (inhomogeneous, dispersive, and conductive) and unbounded media. The proposed FDTD schemes incorporate an extension of the perfectly matched layer (PML) absorbing boundary condition (ABC) to three-dimensional (3-D) cylindrical coordinates. Dispersion on the media is modeled by using the piecewise-linear recursive convolution (PLRC) algorithm, accounting for multiterm Lorentz and/or Debye models. Split-field and unsplit (anisotropic medium) formulations of the cylindrical PML-PLRC-FDTD schemes are implemented and compared in the time domain. The comparison includes the late-time stability properties of the update schemes. Numerical simulations of susbsurface electromagnetic problems are included. Because the proposed schemes retain the nearest-neighbor property of the ordinary FDTD, they are well suited for implementation on massively parallel computers.
منابع مشابه
A Study of Electromagnetic Radiation from Monopole Antennas on Spherical-Lossy Earth Using the Finite-Difference Time-Domain Method
Radiation from monopole antennas on spherical-lossy earth is analyzed by the finitedifference time-domain (FDTD) method in spherical coordinates. A novel generalized perfectly matched layer (PML) has been developed for the truncation of the lossy soil. For having an accurate modeling with less memory requirements, an efficient "non-uniform" mesh generation scheme is used. Also in each time step...
متن کاملNondestructive Testing Resolution:
The practical limits on resolution of images from seismic or radar (electromagnetic) data depend on the spectrum of the source pulse, the incompleteness of the recording geometry, and the fidelity with which one can model the reference medium. These factors together prevent one from recovering a point image from data produced by a point diffractor in a given body. A simple imaging formula quant...
متن کاملInvestigation of Effective Parameters of the Two-Layer Sheet Hydroforming Process for Hollow Parts with Complex Geometry
AbstractHydroforming process is a deep stretching process only with the difference that a fluid is used instead of the mandrel. This paper investigates the hydroforming process of non-cylindrical and non-spherical geometries using finite element analysis software to calculate the influences of effective process parameters such as the coefficient of friction between the surfaces and the pressure...
متن کاملSignificant Error Propagation in the Finite Difference Solution of Non-Linear Magnetostatic Problems Utilizing Boundary Condition of the Third Kind
This paper poses two magnetostatic problems in cylindrical coordinates with different permeabilities for each region. In the first problem the boundary condition of the second kind is used while in the second one, the boundary condition of the third kind is utilized. These problems are solved using the finite element and finite difference methods. In second problem, the results of the finite di...
متن کاملFinite Difference and Discontinuous Galerkin Methods for Wave Equations
Wang, S. 2017. Finite Difference and Discontinuous Galerkin Methods for Wave Equations. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1522. 53 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-554-9927-3. Wave propagation problems can be modeled by partial differential equations. In this thesis, we study wave propagation in fluids and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE Trans. Geoscience and Remote Sensing
دوره 38 شماره
صفحات -
تاریخ انتشار 2000